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Effect of intercommunication between various 
elements of a material on its crack extension 
resistance: linear intercommunication force law 

E. S M I T H  
Manchester University/UMIST Materials Science Centre, Grosvenor Street, 
Manchester M1 7HS, UK 

A material's resistance to failure by crack extension is influenced by the characteristics of the 
intercommunication between the various elements that comprise the material's structure. This 
paper investigates in detail the case where the material consists of linear elements with the 
crack being transverse to these elements. Various simulation models are analysed, with con- 
sideration being focused on the case where the shear intercommunication between the elements 
is linearly related to the shear strain. It is shown that there is a correlation between weak 
intercommunication and a high crack extension resistance but that, for a wide range of situ- 
ations, the strength of the shear intercommunication has relatively little effect on the crack 
extension resistance. This means that when seeking explanations for large differences in the 
crack extension resistances of various types of material, it is appropriate to look for such 
explanations beyond the confines of a simple linear intercommunication law. 

1. I n t r o d u c t i o n  
Materials can often be regarded as consisting of a 
collection of elements between which there is some 
shear intercommunication; examples are crystalline 
metals, rope, cloth, natural tendons, and wood. Gor- 
don [1] has emphasized that the characteristics of this 
intercommunication play a crucial role with regard to 
the material's resistance to crack extension, and has 
identified various categories of intercommunication in 
terms of their effects on crack extension. This paper 
examines the situation where the material is comprised 
of a series of linear elements for the case where the 
crack is transverse to the elements. Various simulation 
models are analysed, with consideration being focused 
on the situation where the shear intercommunication 
between the elements is linearly related to the shear 
strain. It is shown that there is a correlation between 
weak intercommunication and a high crack extension 
resistance but that, for a wide range of situations, the 
strength of the shear intercommunication has relatively 
little effect on the crack extension resistance. Conse- 
quently, when seeking explanations for large differ- 
ences in the crack extension resistances of various 
types of material, it is appropriate to look for such 
explanations beyond the confines of a simple linear 
intercommunication law. 

2. T h e o r e t i c a l  a n a l y s i s  
The first very simple two-dimensional model simulat- 
ing the effect of a linear intercommunication between 
the various elements of a material on the extension 
of a crack is illustrated in Fig. 1. There are three 
vertical linear elastic elements each of length 2h, 
spacing b, and tensile modulus M. To simulate a 
displacement applied to the system, the ends of each 
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element are subjected to applied displacements +_ D, .  
The central element is assumed to have fractured at 
its mid-point, and the crack extension process is 
simulated by the fracturing of the outer elements 
at their mid-points, it being assumed that this requires 
the attainment of a critical fracture strain, ev. It must 
be emphasized that this model is extremely idealized in 
the way in which it simulates the crack extension 
process, because only three elements are involved in 
the cracking process. Nevertheless, a very simple 
analysis is possible and this allows for some key 
features of the problem to be readily appreciated. The 
model is an improvement of an earlier model [2, 3] 
where the central element is intact and the outer 
elements are fractured, with the crack extension 
process being simulated by the fracturing of the 
central element. The shear communication between 
the elements is simulated by a restraining force 
between adjacent elements that is linearly related to 
the relative displacement of equivalent points in the 
adjacent elements. 

With x being measured from the mid-points of the 
elements, the displacements u~ (x) of the outer elements 
and the displacement uo(x) of the central element are 
odd functions of x. If T~(x) is the tension within 
an outer element, To(x) is the tension within the 
central element, and L~/ab  = L(uo - Ul)/ab is the 
restraining force per unit length provided by the shear 
intercommunication between the elements (a is a 
materials-related length parameter associated with 
each element), equilibrium of the elements provides 
the equations 

dTi L(uo -- ul) 
d ~  + ab - 0 ( l )  
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Figure 1 The simple model simulating the effect of the shear inter- 
communication between the various elements of a material on the 
extension of a crack. 2h is the Length of  each element and b is the 
spacing between the elements. 

with 

and 

dT0 2L(u0 - ul) 

dx  ab 
- 0 (2) 

T l = M dul (3) 
dx 

d u  o 
To = M dx (4) 

whereupon Equations 1 and 2 become, respectively, 

d2ul L(uo ul) - 0 (5) 
dx  2 + M a b  

d2u0 2L(u0 - -  b/ l )  
- 0 ( 6 )  

dx 2 M a b  

By virtue of the system's symmetry it is necessary to 
consider only one half of  the system (i.e. x > 0) for 
which the boundary conditions are 

u0, ul = D ,  w h e n x  = h (7) 

duo 
dx 'U* = 0 w h e n x  = 0 (8) 

the condition duo/dx = 0 when x = 0 reflecting 
the fact that the central element is fractured at its 
mid-point. 

It follows from Equations 5 and 6 that 

M a b  d2u~ 
u0 = ul L dx 2 (9) 

and 

d4ul 3L d2ul 
o ( lO)  

dx* M a b  d x  2 --  

the solutions of  these linear differential equations sat- 
isfying the boundary conditions Equations 7 and 8 
being 

Uo = A + B x  -- 2 C  exp ( - 2 x )  2D exp (2x) 

(11) 

u! = d + B x  + C exp ( -  2x) + D e x p ( 2 x )  

(12) 

where the constants A, B, C and D are given by the 
expressions 

D,  [exp (22h) - 1] 
A = 

[exp (22h) - l] + 22h [exp (22h) + 1] 

(13a) 

B = 22D,[exp (22h) + 1] 

[exp (22h) - 1] + 22h [exp (22h) + 1] 

(13b) 

C = - D ,  exp (2,:oh) 
[exp (22h) - 1] + 22h [exp (22h) + 1] 

(13c) 

D ,  
D = 

[exp (22h) - 1] + 22h [exp (22h) + 1] 

(~3d) 

and 2 is equal to ( 3 L / M a b )  1'2. If  the eM -- D , / h  

is regarded as the macroscopic strain and eL = 
(dul/dX)x o is the local strain at the mid-point of  an 
unfractured element (it is assumed that an element 
fractures when eL attains a critical value eg), Equations 
12 and 13 show that 

e L 3 
- ( 1 4 )  

F tan_h ff hq g,14 

L 2 + 2h J 

It is immediately seen that the ratio eL/eM, which 
reflects the extent to which the strain is focused, 
decreases as the intercommunication (L or 2) becomes 
weaker, leading to an increased crack extension resist- 
ance. However, eL/eM always lies between l and 3/2 
and is close to 3/2 (the value appropriate to h = ~ )  
for a wide range ofh  values, i.e. it is relatively unaffec- 
ted by the strength of the shear intercommunication. 

Suppose, instead, that the boundary conditions at 
x = h are duo/dx  = c A, which is equivalent to speci- 
fying that constant forces PA - MeA are applied to the 
system. In this case, by following procedures similar 
to those in the preceding paragraph, the general 
Equations 11 and 12 together with the new boundary 
conditions give 

eL 3 
- (15) 

e m 2 

a result that can also be obtained merely by balanc- 
ing forces; in this case the magnitude of the strain- 
focusing effect is unaffected by the strength of the 
shear intercommunication. Comparison of Equations 
14 and 15 show that for the limiting situation where 
the elements are infinitely long, i.e h ~ oc, the mag- 
nitude of the strain-focusing effect is independent of  
the strength of the shear intercommunication and, 
furthermore, is the same irrespective of whether a 
macroscopic or far-field strain is applied to the system. 
Similar conclusions were obtained [3] for the model in 
which the central element is intact and the two outer 
elements are fractured. 

To demonstrate the generality of  the conclusion 
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Figure 2 The model with (2p + 1) fractured elements and 2q intact 
elements; the elements have infinite length. 

regarding the independency  o f  the s t rength of  the 
shear in t e rcommunica t ion  when the e lement  length is 
infinite, consider  the model  (Fig.  2) where there are 
(2,o + 1) f rac tured  elements  and  2q intact  elements.  
F o r  this model ,  the governing  force equi l ibr ium 
equat ions  that  are ana logous  to Equa t ions  5 and  6 are 

d2uo 2L(u 0 - -  b/l) 
- 0 ( 1 6 )  

dx  2 Mab 

d2u,, L 
dx  2 Mab {(u,, i - u,) - (u, - u,+l)  } = 0 

,r , = l t o  -1 

p + q - 1  J (17) 

d2ui,=q L 
d x  2 + ~bab {(up+q ~ - up+4) } = 0 (18) 

where u,,(x) is the d i sp lacement  of  the n th element,  
and  x is measured  f rom the mid -po in t  o f  an element.  
The b o u n d a r y  condi t ions  are du,,/dx = 0 for n = 0, 
1 . . . .  p and  u,, = 0 for n = p + 1, p + 2 , . . . ,  
p + q, when x = 0, and  in accord  with the earl ier  
comments  concern ing  the model  in Fig. 1, the bound-  
ary condi t ion  du,,/dx = aM when x ~ oo implies 
a macroscop ic  s t ra in  aM, far-field strain aM or  con- 
s tant  appl ied  forces P = Mew. In t roduc ing  new 
dimensionless  var iables  w, = u,,/b for all n and y = 
x (L /Mab)  1'2, the system of  Equa t ions  16, 17 and !8 
reduces to a system o f  l inear  differential  equa t ions  
involving w and the var iable  y but  not  the pa rame te r s  
L and M. The  b o u n d a r y  cond i t ions  become d w , / d y  = 
0 for  n = 0, 1 . . . . .  p and  w,, = 0 for  n = p + 1, 
p + 2, . . . , p  + q when y = 0, and  dw,,/dy = 
eu (Ma/Lb)  ~'2 for all n when y = oo. Simple d imen-  
sional  reasoning  then shows that  the funct ional  
re la t ionships  for  the d isp lacements  are 

( Ma ~ ''2 
w, = a v \ - ~ - ) ]  L ( Y )  (19) 

or  in terms o f  the or iginal  var iables  

~- = e v \ - ~ - ]  .f,, x ,.'2 (20) 

Because the s train at  the mid -po in t  of  the first in tac t  

b 

u z u t 

1 °° 

b 

Ul  u 2 

Figure 3 The model where there is one fractured element and four 
intact elements; the elements have infinite length. 

element,  i.e. the e lement  for which n = p + 1, is 
dup+ 1/dx for x = 0, it fol lows f rom Equa t ion  20 with 
n = p + 1 that  this s train is independen t  of  the 
ra t io  ( L / M ) ,  i.e. independen t  of  the s t rength of  the 
shear  in te rcommunica t ion .  This s imple d imens iona l  
a p p r o a c h  does not,  o f  course,  give the magn i tude  of  
the s t ra in-focusing effect, but  an analysis  is fair ly 
simple when there is one f rac tured  element  and  four  
intact  e lements  as the next p a r a g r a p h  now shows. 

Cons ider  the mode l  (Fig. 3) where the elements  
are infinitely long, there being one centra l  f rac tured  
e lement  and  four intact  elements,  two on either side o f  
the f rac tured  element.  Wi th  this model ,  the governing  
force equi l ibr ium condi t ions  are 

d 2 u o L 
d x  2 4- ~ b a b  [2ul - 2u0] = 0 (21) 

d 2 u I L 
dx  ~ + ~ r ~ [ u °  - 2u, - u2] = 0 (22) 

d2u2 L 

dx  2 + ~bab[Ut - u2] = 0 (23) 

where u,(x) is the d isp lacement  o f  the n t h  element.  
The b o u n d a r y  condi t ions  are duo/dx = 0 and u~, 
u2 = 0 when x = 0, while the cond i t ion  duo/dx = 
du j /dx  = du2/dx = e u when x ~ oo implies a 
macroscop ic  s t ra in  Zv, a far-field s train Z~4, or  con- 
s tant  appl ied  forces P = MaM. Aga in  in t roduc ing  
the new dimensionless  var iables  w,, = u~,/b and y = 
x (L /Mab)  ~:2, the system o f  Equa t ions  21, 22 and  23 
reduce to 

d-" w 0 
dv---72 + [2Wl - 2w0] = 0 (24) 

d 2 I t '  1 

dv ~ + [w0 - 2wl -i- we] = 0 (25) 

d 2 w~ 
dy [ + [w~ - w2] = 0 (26) 

coupled  with the b o u n d a r y  condi t ions  dwo/dy = 
0, w~ = w2 = 0 when y = 0, while dw0/dy = 
dwl /dy  = d w 2 / d y  = aM(Ma/Lb) ~'2 when y =  or. I t  
follows from Equa t ions  24, 25 and 26 that  the 
d isp lacements  w0, w~ and w 2 can be expressed in the 
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forms 

14' 0 A + By + C e x p (  mly )  + D e x p ( - m 2 y )  

(27) 

% = A + By + C 1 - e x p ( - m l y )  

+ D 1 - e x p ( - m 2 y )  

(28) 

I 41 m[ 
w2 = A + By + C 1 - -  2m~ + ~ -  

× e x p ( - - m l y )  + D 1 - 2m~ + ~ -  

× exp ( - m 2 y )  

(29) 

where A, B, C and D are constants that can be deter- 
mined from the boundary conditions, while ml and m2 
are the positive solutions of  the quartic equation 

m 4 -- 5m 2 q- 5 = 0 (30) 

The boundary conditions give 

B = eM(Ma/Lb)  I/2 (31) 

Bin2(3 - m~) 
C = 

ml(m2 - ml)(3 - m~ - mira 2 - m~) 

(32) 

B m  1(3 -- m~) 
D = 

m2(m , -- m2)(3 - m~ -- m l m  2 -- m~) 

(33) 

It follows that the local strain at the centre of the first 
intact element is e u = dul /dX = (Lb/Ma)a/2dw~/dy 

for y = 0, and is given from Equations 28, 31, 32 and 
33 by the expression 

[ ( m ,  + m2) 2 ] 
E'LI = gMm,m2 k(m---]m-~ + 33 1j (34) 

or  

gM(5 -- 51/2) 
eL1 - 2 - 1.38<u (35) 

using Equation 30. This result shows the extent to 
which the strain is focused as a consequence of the 
linear shear intercommunication. For the sake of 
comparison, the local strain at the centre of  the second 
intact element is ~:L2 = duz /dx  = (Lb/Ma) l /2dw2/dy  

for y = 0, and is given from Equations 29, 31, 32 and 
33 by the expression 

{ ]} CL2 = 8Mmtm2 L (mlm2 + 3) 1 

{ 3(ml + m2)2} 
X 1 q- (mira 2 Jr- 3) (mlm 2 + 3) 

(36) 

or 
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E, M 51/2 
eLt - - 1.12eM (37) 

2 

Balance of forces gives (~:~ + c~.2) = 5~:t~/2, a result 
that is compatible with Equations 35 and 37. 

The analyses for the preceding discrete element 
models have clearly shown that the strain-focusing 
effect, and therefore the material 's crack extension 
resistance, is independent of  the strength of the 
shear intercommunication for a linear intercommuni- 
cation law, when the elements are infinitely long. 
This conclusion is also valid when the behaviour of  
the individual elements is averaged, so as to give a 
continuum-type model, as the following analysis now 
shows. Consider the case where the elements, whose 
behaviour is to be averaged, are paralled to the y-axis. 
The deformation is plane strain with the deformation 
confined to the xy plane and the only displacement 
component  v is parallel to the y-axis (note that the 
co-ordinates x and y are now used in a different sense 
compared with the earlier models). For this situation, 
the appropriate stress components are 

c')v 
p,.,. = M ~3, (38) 

and 

p,., = L c'~x (39) 

where M and L are essentially tensile and shear moduli 
for this anisotropic-type deformation; Equations 38 
and 39 reflect the linear character of the problem. The 
force equilibrium equation is 

@,,~ @., ,, 
+ = 0 ( 4 0 )  

c?y c?x 

which, after substituting from Equations 38 and 39, 
becomes 

c?2v ~2v 
M + L - 0 (41) @2 c?x z 

an equation that is analogous to the differential 
equations which govern the behaviour of  the discrete 
element models analysed earlier in this section. Upon 
introducing the new variable X = x ( M / L )  ~ 2, this 
equation reduced to Laplace's equation in the vari- 
ables X and y 

(?2v c?2v 
+ -  = 0 (42) ~y2 ~X 2 

Against this background, consider the particular 
model (Fig. 4) of  the plane strain deformation of a 
slab of thickness 2h in the y direction and of infinite 
dimensions in the x and z directions. The slab contains 
a crack, with infinite length in the z direction, and of 
length 2c in the x direction. The slab surfaces are 
subject to the displacements _+D,, such that the 
macroscopic strain applied to the slab is e,u = D , / h .  
By appealing to the results [4] for the Mode III defor- 
mation of this slab, when the displacement is now 
parallel to the z-axis, a situation for which Laplace's 
equation is governing, it follows that the strain 
g,L = ~?v/@ along the plane of the crack at a small 
distance b ahead of the crack tip is 

(?v K 
eL -- (?5, -- M(2=b,)l,_ (43) 
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Figure 4 The c o n t i n u u m  model  of  a c rack  in a slab wi th  finite 

thickness  2h. The e lements  whose  behav iour  is averaged  are para l le l  

to the y-axis,  and  d i sp lacements  are appl ied  to the s lab faces. 

with b,  = b(M/L) 1/2 and where K is given by the 
expression 

Q ,'~ \1/2 
r rc ,  ~ (44) K = MeM 2h tanh  2h ] 

with C,  = C(M/L)  1i2. Equations 43 and 44 then give 

s L  [h tanh =C (21//-'~ ''2 /7~b(M~l/2] 112 
~. ~ k L ) I \ L ) J (45) 

This result shows that SL/SM decreases as the intercom- 
munication (L) becomes weaker, but that SL/gM is 
relatively insensitive to the strength of the shear inter- 
communication for a wide range of h values, having a 
magnitude relevant to the limiting case where the 
elements are of infinite length, i.e. h --+ c~, when 
Equation 45 reduces to 

sL ( C )  ~'2 
s7 = \2-b]  (46) 

This result is compatible with those for the discrete 
element models analysed earlier in this section. 

Now consider the case (Fig. 5) where, instead of 
displacements being applied to the slab faces, normal 
stresses, a, are applied, these generating a far-field 
tensile strain of magnitude sA = a/M. In this case, 
proceeding as for the model in Fig. 4, the parameter K 

T Y PlY = o" 

z /~ ,,::::Z::2ZZ::~ ) x 
< ) 

2 c  

$ 
pyy  = o" 

Figure 5 The c o n t i n u u m  model  of  a c rack  in a slab wi th  finite 
thickness  2/l. The e lements  whose  behav iou r  is averaged  are paral le l  

to the ),-axis, and  stresses are appl ied  to the s lab faces. 

is given by the expression [5] 

rrC, ~1,'2 i tan  h ~C,  i 

(47) 

where, K, on the right-hand side of Equation 47, is the 
appropriate complete elliptic integral. The result 
analogous to Equation 45 is 

( M,~li2 i I/2  tanh tz) 
£M 

K Itanh ~C x z-) ilLS/ 
(48) 

This result again demonstrates that ~L/SM decreases as 
the intercommunication becomes weaker, but that 
SL/ S M is relatively insensitive to the strength of the 
shear intercommunication for a wide range of h 
values, having a magnitude appropriate to the limiting 
case where the elements have infinite length, i.e. h --* 
0% when Equation 48 reduces to 

sL _ ( C ~ '/2 
ea \ ~ ]  (49) 

Furthermore, comparison of Equations 46 and 49 
shows that the results for the macroscopic and far- 
field strain situations are identical. These results are 
also compatible with the conclusions from the analy- 
ses for the discrete element models. 

3. Discussion 
The preceding section's analyses, both for the dis- 
crete element models and models where the behaviour 
of the discrete elements is averaged, have been con- 
cerned with the case where the shear intercommuni- 
cation between the elements is linear, in the sense that 
the shear resistance is linearly related to the shear 
strain. The effect of the strength of the shear intercom- 
munication on a material's resistance to crack exten- 
sion has been investigated, and it has been shown that 
the crack extension resistance, increases as the inter- 
communication becomes weaker, though there is a 
wide range of situations where this resistance is 
relatively insensitive to the strength of the shear 
intercommunication. 

This means that when seeking explanations for 
large differences in the crack extension resistances of 
various types of material, it is necessary to move 
beyond the confines of a simple linear intercommuni- 
cation law, and view such a comparison in terms of 
different types of force law. Thus, as emphasized by 
Gordon [1], there are essentially three categories of 
material that are highly resistant to crack extension. 
Firstly, where the intercommunication is very weak to 
the extent that the structural elements are essentially 
isolated; examples are rope, cloth, and natural ten- 
dons. Secondly, where a structure contains weak inter- 
faces so that the adhesion between the elements fails 
fairly readily; examples are timber, teeth and some 
artificial composite materials. Thirdly, where the 
intercommunication is weak at low stresses followed 
by a rapid increase at a critical strain level; examples 
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are many human and animal membranes. These three 
extreme categories emphasize the necessity of pro- 
ceeding beyond a simple linear intercommunication 
force law, when considering the effects of intercom- 
munication on crack extension resistance. 
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